Building ML Training Sets: Preprocessing Datasets for Linear Regression
This 7-video course helps learners discover how to implement machine learning scaling techniques such as standardizing and min-max scaling on continuous data and one-hot encoding on categorical features to improve performance of linear regression models. In the first tutorial you will use Pandas library to load a CSV file into a data frame and analyze its contents by using Pandas and Matplotlib. You will then learn how to create a linear regression model with scikit-learn to predict the sale price of a house and evaluate this model by using metrics such as mean squared error and r-square. Next learners will examine the application of min-max scaling on continuous fields and one-hot encoding on the categorical columns of a data set. Then analyze effects of preprocessing by recognizing benefits of scaling and encoding data sets by evaluating the performance of a regression model built with preprocessed data. Also learn how to use scikit-learns StandardScaler on a data sets continuous features and compare its effects with that of min-max scaling. The concluding exercise involves preprocessing data for regression.