Applied Predictive Modeling

placeholder

In this course you will explore machine learning predictive modeling and commonly used models like regressions clustering and Decision Trees that are applied in Python with the scikit-learn package. Begin this 13-video course with an overview of predictive modeling and recognize its characteristics. You will then use Python and related data analysis libraries including NumPy Pandas Matplotlib and Seaborn to perform exploratory data analysis. Next you will examine regression methods recognizing the key features of Linear and Logistic regressions then apply both a linear and a logistic regression with Python. Learn about clustering methods including the key features of hierarchical clustering and K-Means clustering then learn how to apply hierarchical clustering and K-Means clustering with Python. Examine the key features of Decision Trees and Random Forests then apply a Decision Tree and a Random Forest with Python. In the concluding exercise learners will be asked to apply linear regression logistic regression hierarchical clustering Decision Trees and Random Forests with Python.